
Construction of a nonrecursive 64-bit

pseudorandom number generator based on beta

transformations on [1,2)

Hirotake YAGUCHI∗

[1,2) 上のベータ変換に基づく非再帰型６４ビット擬似乱数の構成

谷　口　礼　偉

Abstract

A beta transformation (β-transformation) on [1,2) is a function Mβ :
[1, 2) → [1, 2) defined by Mβ(t) = βt − bβtc + 1, β > 1. In this pa-
per we construct a nonrecursive 64-bit pseudorandom number generator
SSI64rand using Mβ(t) and test the randomness of SSI64rand by applying
various statistical tests.

§1. Introduction

In [4] they constructed a nonrecursive pseudorandom number generator
SSI32rand using a modified algorithm of SSR32rand whose origin is cancel-
lation error of numerical computations. However a mathematical description
of the algorithm of SSI32rand was not investigated there. Recently in [6] they
constructed a nonalgebraic hash function called MBnhash based on beta trans-
formations Mβ(t) on [1,2). There, a relation of algorithms between beta trans-
formations Mβ(t) and SSI32rand was only indicated but not stated. So in this
paper, based on Mβ(t), we construct a nonrecursive 64-bit pseudorandom num-
ber generator SSI64rand whose algorithm is the same as SSI32rand except for
the bit size, and give a mathematical description of the algorithm of SSI64rand
precisely.

∗Department of Mathematics, Mie University, Tsu City, 514-8507, Japan. (E-mail:
yaguchi@edu.mie-u.ac.jp) This work was supported by JSPS KAKENHI Grant Number
23500086.

1

In the next section we give algorithm and implementation of SSI64rand, and
in §3 test the randomness of SSI64rand by applying NIST’s suite of testing
randomness [7] and TestU01 by L’Ecuyer [1].

§2. Algorithm and implementation of SSI64rand

2.1. Algorithm of SSI64rand. Let Mβ : [1, 2) → [1, 2) be a beta transfor-
mation on [1,2) defined by Mβ(t) = βt − bβtc + 1, β > 1, where bβtc is the
largest integer not exceeding βt. (We often adopt the notation appeared in [6].)
Let 1.e and 1.π be numbers defined by 1.27181 · · · and 1.31415 · · · respectively.
(The notation e and π implies Napier’s constant and the mathematical con-
stant pi respectively.) We first use 1.e. Let the binary representation of 1.e be
1.r̂1r̂2 · · · r̂63 · · · . For a given nonnegative 63-bit integer ν1ν2 · · · ν63 we make a
number x in [1,2) from 1.e by

x = 1.(r̂1 ⊕ ν1)(r̂2 ⊕ ν2) · · · (r̂63 ⊕ ν63)r̂64r̂65 · · · , (1)

where ⊕ is the logical operation XOR (exclusive or). We write (1) such as
x = (1.e)⊕ (ν1ν2 · · · ν63) for short. Let w0 be a fixed number in [1,2). Then we
compute

u ≡ M16
25x(w0) = 1.b̌7b̌8 · · · b̌127b̌128 · · · (in binary). (2)

If we put w0 = x and take out b̌32b̌33 · · · b̌95 as a 64-bit random number from u,
this algorithm is the same as MB32rand in [6] except for the bit size. However
in SSI64rand, in order to increase randomness, we further compute

y = (1.π)⊕ (ν̃1ν̃2 · · · ν̃63) and v ≡ M16
25y(w̃0) = 1.b̃7b̃8 · · · b̃127b̃128 · · ·

for w̃0 and ν̃1ν̃2 · · · ν̃63 which are different from w0 and ν1ν2 · · · ν63 respectively.
Let b̂0b̂7b̂8 · · · b̂127 be the result of binary subtraction 1b̌7b̌8 · · · b̌127−1b̃7b̃8 · · · b̃127.
Then as a 64-bit random number ζ we take out b̂32b̂33 · · · b̂95. To make a sequence
of random numbers {ζk}k=0,1,2,···, we use

(0x39f750241c2d5d33)× k mod 0x7fffffffffffffe7, (3)

(0x32f50fee9b2a32bb)× k mod 0x7fffffffffffff5b (4)

as the k-th ν1ν2 · · · ν63 and ν̃1ν̃2 · · · ν̃63 respectively. (0x means ”in the hexadec-
imal representation”.) So x and y in M16

25x(w0) and M16
25y(w̃0) are

xk = (1.e)⊕ (ν1ν2 · · · ν63) and yk = (1.π)⊕ (ν̃1ν̃2 · · · ν̃63)

respectively. (Of course all integers in (3) and (4) are prime numbers; and so
the period of SSI64rand is approximately 2126 ≈ 1038.) Numbers w0 and w̃0 are
used to change a sequence of SSI64 random numbers. As the initial values we
use w0 = 1.e and w̃0 = 1.π.

2.2. Implementation of SSI64rand. We implement the algorithm of SSI64-
rand in the following 64-bit number system:

2

1) a number 1.b1b2 · · · b63b64 · · · in [1,2) is rounded to 64-bit 1.b1b2 · · · b63,
2) a multiplication of 64-bit numbers 1.t1t2 · · · t63 and 1.x1x2 · · ·x63 is

performed precisely and yields a 128-bit number b̌0b̌1.b̌2b̌3 · · · b̌127

with b̌0b̌1 = 01 or b̌0 = 1 depending on whether the result is in [1,2) or
[2,4) respectively,

3) a 64-bit number 1.bsbs+1 · · · bs+62 is taken out from a result b0b1.b2b3 · · ·
b127 of multiplication. (s depends on context and s = 7 for M25x(t).)

It is convenient for us to identify a 64-bit number 1.b1b2 · · · b63 and a 128-bit
number b̌0b̌1.b̌2b̌3 · · · b̌127 with integers 1b1b2 · · · b63 and b̌0b̌1b̌2b̌3 · · · b̌127 respec-
tively. Hence below we do it. (→ Numbers 1.e and 1.π are identified with

0xa2cb4411ba257552 and 0xa8365eed39e1c070

respectively.) Since M25x(t) is calculated such as

M25x(t) = (25x)t mod [1, 2) = (25)(xt) mod [1, 2)
= 25 × b̌0b̌1 . b̌2b̌3b̌4b̌5b̌6b̌7b̌8 · · · mod [1, 2)
= b̌0b̌1b̌2b̌3b̌4b̌5b̌6 . b̌7b̌8 · · · mod [1, 2)
= 1 . b̌7b̌8 · · · ,

a computation of M25x(t) under our 64-bit integer system is performed such as

1x1x2 · · ·x63

1t1t2 · · · t63
mul−→ b̌0b̌1b̌2 · · · b̌5b̌6b̌7 · · · · · · b̌127

shift6−→ b̌6b̌7 · · · b̌69 · · · b̌127

OR−→ 1b̌7 · · · b̌69 · · · b̌127
cut−→ 1b̌7b̌8 · · · b̌69.

Suppose M16
25xn

(1.e) and M16
25yn

(1.π) are identified with 1b̌7b̌8 · · · b̌127 and 1b̃7b̃8 · · ·
b̃127 respectively. The n-th SSI64 random number ζn is the 64 bits b̂32b̂33 · · · b̂95

in b̂0b̂7b̂8 · · · b̂127 which is the result of binary subtraction 1b̌7b̌8 · · · b̌127−1b̃7b̃8 · · ·
b̃127. For example the first and the second SSI64 random numbers are 0x8eaafb19
f73587f8 and 0x4bb2533b46fb5cf1 respectively. In the appendix we give a code
of computing an SSI64 random number.

§3. Randomness of SSI64rand

We tested the randomness of random numbers generated by SSI64rand by
applying NIST’s statistical test suite sts-2.1.1 [7] and L’Ecuyer’s BigCrush suite
in TestU01 V.1.2.3 [1] as usual. We repeated NIST’s test suite 10 times for
consecutive 10 files consisting of one gigabits and took average of 10 results of
each test. (In the block frequency test we modified the block length to 20000.)
The maximum and the minimum of the averaged values are as follows:

3

[SSI64rand]
P-VALUE AvMax = 0.742517 at NonOverlappingTemplate [i = 131]
P-VALUE AvMin = 0.185703 at NonOverlappingTemplate [i = 45]
PROPORTION AvMax = 0.992719 at RandomExcursionsVariant [i = 179]
PROPORTION AvMin = 0.986145 at RandomExcursions [i = 159]

In the result above, p-values which each test of the suite generates are expected
to spread uniformly in [0,1]. PROPORTION (FRACTION) is the proportion
of sequences of random numbers which pass the test at the level of 0.01. (The i
in [i = x] is the serial number of the test in the suite.) Below, for comparison’s
sake, we cite the result of Mersenne Twister ar pseudorandom number generator
[8][6]:

[Mersenne Twister ar]
P-VALUE AvMax = 0.713578 at NonOverlappingTemplate [i = 105]
P-VALUE AvMin = 0.188745 at NonOverlappingTemplate [i = 126]
PROPORTION AvMax = 0.992879 at RandomExcursionsVariant [i = 168]
PROPORTION AvMin = 0.986809 at RandomExcursions [i = 159]

Next we applied BigCrush of TestU01. In TestU01 each test requires 32-bit
integers or double precision numbers in [0,1]. When a double precision number
in [0,1] was requested, we first made a number in [1,2) by putting the first 52 bits
of ζk in the mantissa and setting its exponent to be · · · × 20, and then subtract
one from the number. When a 32-bit number was requested we supplied the
first half and then the second half of ζk. The tests consisting of BigCrush were
executed parallelly, and the result of BigCrush was ”All tests were passed”.
The time required for BigCrush was about 250 hours on (Xeon 3.1 GHz) +
(Windows 7 Professional 64-bit). (TestU01 allows only 32-bit gcc, and so we
can not use the 64-bit code in the appendix, which is about 7 times faster than
a usual 32-bit C code.)

Remark. Distribution of SSI64 random numbers

Essentially a beta transformation Mβ(s) = βs−bβsc+1 on [1,2) is a special
version of linear mod one transformation Tβ,α : [0, 1) → [0, 1) defined by

Tβ,α(x) = βx + α mod 1 = βx + α− bβx + αc (0 ≤ α < 1)

[2][3]. In fact Mβ and Tβ,α are related such as

Mβ(t) = Tβ,β̂(t− 1) + 1, t ∈ [1, 2), (5)

where β̂ = β−bβc(= the fractional part of β) [6]. So we can make use of results
of researches about linear mod one transformation Tβ,α. Especially we know
that

hβ,α(x) =
∑

x<T n
β,α(1), n≥0

1
βn

−
∑

x<T n
β,α(0), n≥1

1
βn

(6)

4

defines an invariant measure νβ,α(E) =
∫

E
hβ,α(x)dλ(x) for Tβ,α, where Tn

β,α(1)
= limx→1+0 Tn

β,α(x) and λ is Lebesgue measure on [0,1) [2][3]. From this we
have

1− 1
β − 1

≤ hβ,α(x) ≤ 1 +
1

β − 1
(7)

(see [6]). In our SSI64rand the β is in [25, 26), and so 1
63 < 1

β−1 ≤ 1
31 . Also

concerning the normalized measure µβ,α of νβ,α we have

lim
N→∞

1
N

N−1∑
n=0

f(Tn
β,α(x)) =

∫

[0,1)

f(y)dµβ,α(y) a.a. x. (8)

From these circumstances we think that we can prove that if k is large, then
the distribution of Mk

25x(x) under the assumption that x spreads uniformly in
[1,2) is approximated by the normalized measure on [1,2) derived from

H(·) =
∫ 2

1

h
25w,(̂25w)

(· − 1)dw

[4][6].

References

[1] P. L’Ecuyer and R. Simard, TestU01: A C Library for empirical testing of
random number generators, ACM Transactions on Mathematical Software,
vol. 33, no. 4 (2007), Article 22.
(http://www.iro.umontreal.ca/˜simardr/testu01/tu01.html)

[2] W. Parry, Representations for real numbers, Acta Math. Acad. Sci. Hungar.,
vol. 15 (1964), pp. 95-105.

[3] K. M. Wilkinson, Ergodic properties of certain linear mod one transforma-
tions, Advances in Math., vol. 14 (1974), pp. 64-72.

[4] H. Yaguchi and I. Kubo, A new nonrecursive pseudorandom number gener-
ator based on chaos mappings, Monte Carlo Methods Appl., vol. 14 (2008),
pp. 85-98. DOI 10.1515/MCMA.2008.005

[5] H. Yaguchi and S. Ueda, Construction, randomness and security of new
hash functions derived from chaos mappings, Interdisciplinary Information
Sciences, vol. 18 no. 1 (2012), pp. 1-11. DOI 10.4036/iis.2012.1

[6] H. Yaguchi, Construction and security of nonalgebraic hash functions based
on β-transformations on [1,2).

[7] http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

5

[8] http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/MT2002/mt19937ar
.html

Appendix. Here we give a code of generating an SSI64 random number. The
code was tested by Intel’s icl (64-bit) and gcc (64-bit). The whole SSI64rand is
at http://math1.edu.mie-u.ac.jp/yaguchi/SSI64rand.html .

//********************************

#define MB_W64_X64_16(out, in1, in2) \

__asm__("mov %3, %%rcx; \

mov %2, %%rax; \

mov $0x8000000000000000, %%r10; \

or %%r10, %%rax; \

mul %%rcx; \

shl $6, %%rdx; \

shr $58, %%rax; \

or %%rdx, %%rax; \

repeat from "or" to "or" above 14 times

or %%r10, %%rax; \

mul %%rcx; \

mov %%rdx, %0; \

mov %%rax, %1; \

" \

: "=r"(out.hi64), "=r"(out.lo64) \

: "r"(in1), "r"(in2) \

: "%rax", "%rcx", "%rdx", "%r10" \

);

//********************************

#define SUB_128_128_SHL32(out, in1, in2) \

__asm__("mov %2, %%rax; \

mov %3, %%rdx; \

mov %5, %%rcx; \

sub %%rcx, %%rdx; \

mov %4, %%rcx; \

sbb %%rcx, %%rax; \

mov %%rdx, %%rcx; \

shl $32, %%rax; \

shr $32, %%rcx; \

or %%rcx, %%rax; \

shl $32, %%rdx; \

mov %%rax, %0; \

mov %%rdx, %1; \

" \

: "=r"(out.hi64), "=r"(out.lo64) \

: "r"(in1.hi64), "r"(in1.lo64),"r"(in2.hi64), "r"(in2.lo64) \

: "%rax", "%rcx", "%rdx" \

);

//********************************

typedef struct

{

6

unsigned long long int lo64;

unsigned long long int hi64;

} my_i128;

//*********************************//

unsigned long long int genSSI64rand(unsigned long long int x,

unsigned long long int t,

unsigned long long int y,

unsigned long long int s)

{

my_i128 u, v, umv;

MB_W64_X64_16(u, t, x);

MB_W64_X64_16(v, s, y);

SUB_128_128_SHL32(umv, u, v);

return(umv.hi64);

}

//********************************

7

